Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem

نویسندگان

  • Roger Pierre
  • ROGER PIERRE
چکیده

We study the behavior of the solution of the Mindlin problem when the thickness becomes small, paying particular attention to the shear stress. We also propose a modification of a known scheme that allows the use of linear finite element approximation and we prove optimal error bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust BDDC Preconditioners for Reissner-Mindlin Plate Bending Problems and MITC Elements

A Balancing Domain Decomposition Method by Constraints (BDDC) is constructed and analyzed for the Reissner-Mindlin plate bending problem discretized with MITC finite elements. This BDDC algorithm is based on selecting the plate rotations and deflection degrees of freedom at the subdomain vertices as primal continuity constraints. After the implicit elimination of the interior degrees of freedom...

متن کامل

Bending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method

This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...

متن کامل

Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory

A trigonometric plate theory is assessed for the static bending analysis of plates resting on Winkler elastic foundation. The theory considers the effects of transverse shear and normal strains. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the traction free conditions at the top and bottom surfaces of the plate without using shea...

متن کامل

Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate

This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load ...

متن کامل

BUCKLING ANALYSIS OF FUNCTIONALLY GRADED MINDLIN PLATES SUBJECTED TO LINEARLY VARYING IN-PLANE LOADING USING POWER SERIES METHOD OF FROBENIUS

In this paper, buckling behavior of moderately thick functionally graded rectangular plates resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. Based on the first-order shear deformation plate theory and the neutral s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010